Accurate time dependent wave packet calculations for the N + OH reaction.

نویسندگان

  • Niyazi Bulut
  • Octavio Roncero
  • Mohamed Jorfi
  • Pascal Honvault
چکیده

We present accurate quantum calculations of state-to-state cross sections for the N + OH → NO + H reaction performed on the ground (3)A'' global adiabatic potential energy surface of Guadagnini et al. [J. Chem. Phys. 102, 774 (1995)]. The OH reagent is initially considered in the rovibrational state ν = 0, j = 0 and wave packet calculations have been performed for selected total angular momentum, J = 0, 10, 20, 30, 40,...,120. Converged integral state-to-state cross sections are obtained up to a collision energy of 0.5 eV, considering a maximum number of eight helicity components, Ω = 0,...,7. Reaction probabilities for J = 0 obtained as a function of collision energy, using the wave packet method, are compared with the recently published time-independent quantum mechanical one. Total reaction cross sections, state-specific rate constants, opacity functions, and product state-resolved integral cross-sections have been obtained by means of the wave packet method for several collision energies and compared with recent quasi-classical trajectory results obtained with the same potential energy surface. The rate constant for OH(ν = 0, j = 0) is in good agreement with the previous theoretical values, but in disagreement with the experimental data, except at 300 K.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of elastic scattering in neutral atom transport

Related Articles Dissociation mechanisms of excited CH3X (X = Cl, Br, and I) formed via high-energy electron transfer using alkali metal targets J. Chem. Phys. 137, 184308 (2012) Efficient method for quantum calculations of molecule-molecule scattering properties in a magnetic field J. Chem. Phys. 137, 024103 (2012) Scattering resonances in slow NH3–He collisions J. Chem. Phys. 136, 074301 (201...

متن کامل

l - th / 0 30 10 53 v 1 1 6 Ja n 20 03 1 Time - dependent wave - packet approach for fusion reactions of halo nuclei

The fusion reaction of a halo nucleus 11 Be on 208 Pb is described by a three-body direct reaction model. A time-dependent wave packet approach is applied to a three-body reaction problem. The wave packet approach enables us to obtain scattering solutions without considering the three-body scattering boundary conditions. The time evolution of the wave packet also helps us to obtain intuitive un...

متن کامل

Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.

A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using...

متن کامل

Charge gradient effects on modulated dust lattice wave packets in dusty plasma crystals

  Nonlinear Dust lattice modes are studied in a hexagonal two-dimensional dusty plasma lattice, in presence of charge gradient of dust particles. In this lattice, such gradients affect nonlinear behavior of dust lattice waves. The amplitude modulation of off-plane transverse dust lattice wave packets is investigated considering the anisotropy of interactions, caused by the height-dependent char...

متن کامل

Semiclassical Nonadiabatic Dynamics Based on Quantum Trajectories for the O(P-3,D-1)+H-2 System

The O͑ 3 P , 1 D͒ +H 2 → OH + H reaction is studied using trajectory dynamics within the approximate quantum potential approach. Calculations of the wave-packet reaction probabilities are performed for four coupled electronic states for total angular momentum J = 0 using a mixed coordinate/polar representation of the wave function. Semiclassical dynamics is based on a single set of trajectories e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 10  شماره 

صفحات  -

تاریخ انتشار 2011